On three-periodic trajectories of multi-dimensional dual billiards
نویسنده
چکیده
We consider the dual billiard map with respect to a smooth strictly convex closed hypersurface in linear 2m-dimensional symplectic space and prove that it has at least 2m distinct 3-periodic orbits. AMS Classi cation 37J45, 70H12
منابع مشابه
Periodic trajectories in 3-dimensional convex billiards
We give a lower bound on the number of periodic billiard trajectories inside a generic smooth strictly convex closed surface in 3-space: for odd n, there are at least 2(n − 1) such trajectories. Convex plane billiards were studied by G. Birkhoff, and the case of higher dimensional billiards is considered in our previous papers. We apply a topological approach based on the calculation of cohomol...
متن کاملPeriodic trajectories in 3-dimensional convex billiards
We give a lower bound on the number of periodic billiard trajectories inside a generic smooth strictly convex closed surface in 3-space: for odd n, there are at least 2(n − 1) such trajectories. Convex plane billiards were studied by G. Birkhoff, and the case of higher dimensional billiards is considered in our previous papers. We apply a topological approach based on the calculation of cohomol...
متن کاملTopology of cyclic configuration spaces and periodic trajectories of multi-dimensional billiards
We give lower bounds on the number of periodic trajectories in strictly convex smooth billiards in Rm+1 for m ≥ 3. For plane billiards (when m = 1) such bounds were obtained by G. Birkhoff in the 1920’s. Our proof is based on topological methods of calculus of variations – equivariant Morse and LusternikSchnirelman theories. We compute the equivariant cohomology ring of the cyclic configuration...
متن کاملCorrelations for pairs of periodic trajectories for open billiards
In this paper we prove two asymptotic estimates for pairs of closed trajectories for open billiards similar to those established by Pollicott and Sharp [PoS2] for closed geodesics on negatively curved compact surfaces. The first of these estimates holds for general open billiards in any dimension. The more intricate second estimate is established for open billiards satisfying the so called Dolg...
متن کاملStable regions and singular trajectories in chaotic soft wall billiards
We present numerical and experimental results for the development of islands of stability in atom-optics billiards with soft walls. As the walls are soften, stable regions appear near singular periodic trajectories in converging (focusing) and dispersing billiards, and are surrounded by areas of ”stickiness” in phase-space. The size of these islands depends on the softness of the potential in a...
متن کامل